Inferring Landscape-Scale Land-Use Impacts on Rivers Using Data from Mesocosm Experiments and Artificial Neural Networks
نویسندگان
چکیده
Identifying land-use drivers of changes in river condition is complicated by spatial scale, geomorphological context, land management, and correlations among responding variables such as nutrients and sediments. Furthermore, variations in standard metrics, such as substratum composition, do not necessarily relate causally to ecological impacts. Consequently, the absence of a significant relationship between a hypothesised driver and a dependent variable does not necessarily indicate the absence of a causal relationship. We conducted a gradient survey to identify impacts of catchment-scale grazing by domestic livestock on river macroinvertebrate communities. A standard correlative approach showed that community structure was strongly related to the upstream catchment area under grazing. We then used data from a stream mesocosm experiment that independently quantified the impacts of nutrients and fine sediments on macroinvertebrate communities to train artificial neural networks (ANNs) to assess the relative influence of nutrients and fine sediments on the survey sites from their community composition. The ANNs developed to predict nutrient impacts did not find a relationship between nutrients and catchment area under grazing, suggesting that nutrients were not an important factor mediating grazing impacts on community composition, or that these ANNs had no generality or insufficient power at the landscape-scale. In contrast, ANNs trained to predict the impacts of fine sediments indicated a significant relationship between fine sediments and catchment area under grazing. Macroinvertebrate communities at sites with a high proportion of land under grazing were thus more similar to those resulting from high fine sediments in a mesocosm experiment than to those resulting from high nutrients. Our study confirms that 1) fine sediment is an important mediator of land-use impacts on river macroinvertebrate communities, 2) ANNs can successfully identify subtle effects and separate the effects of correlated variables, and 3) data from small-scale experiments can generate relationships that help explain landscape-scale patterns.
منابع مشابه
Application of Artificial Neural Network in Landscape Change Process in Gharesou Watershed, Golestan Province
Land use change is certainly the most important factor that affects the conservation of natural ecosystems, resulting the conversion of natural lands such as forests and pastures into agricultural, industrial and urban areas. Despite numerous studies investigating landscape patterns due to land use change, the driving forces of landscape change has been less studied in Iran. In this study, Arti...
متن کاملModeling and zoning of land subsidence in the southwest of Tehran using artificial neural networks
The earth's surface, due to its natural conditions and its structure is always changing and reshaping. One of the created deformations is the land subsidence. This is the most dangerous events which can be seen in most urban areas especially in the agricultural plains today. This study aims at zoning land subsidence and recognition of geometrical factors in southwest of Tehran. To estimate and ...
متن کاملIntegrated Artificial Neural Network Modeling and GIS for Identification of Important Factor on Groundwater Hydrochemistry (Fe-,Ca2+ and PO4-3)
Background & Aims of the Study: Groundwater resources are a crucial component of the ecosystem. Management and cleanup of contamination from groundwater resources requires a long term strategy and a huge amount of investments. Artificial neural networks (ANN) and Geographic Information System (GIS) can be useful in determining management strategies. To protect these valuable resourc...
متن کاملMonitoring and Prediction of Land Use/Cover Changes in Shadegan International Wetland, Iran
Quantifying land use/land cover changes is essential to monitor and assess the ecological consequences of human disturbances. Ecological condition and water quality of wetlands are highly related to the landscape characteristics, including land use/land cover (LULC) types and their fractions in the upland and the surrounding landscape. The changing characteristics of LULC in Shadegan Internatio...
متن کاملModeling environmental indicators for land leveling, using Artificial Neural Networks and Adaptive Neuron-Fuzzy Inference System
Land leveling is one of the most important steps in soil preparation and cultivation. Although land leveling with machines requires considerable amount of energy, it delivers a suitable surface slope with minimal soil deterioration as well as damage to plants and other organisms in the soil. Notwithstanding, in recent years researchers have tried to reduce fossil fuel consumption and its delete...
متن کامل